Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse.
نویسندگان
چکیده
The immature brain has a higher susceptibility to develop seizures, which often respond poorly to classical pharmacological treatment. It has been recently suggested that bumetanide, which blocks Na(+)-dependent K(+)-Cl(-)-cotransporter isoform 1 (NKCC1) and thus attenuates depolarizing GABAergic responses, could soothe epileptiform activity in immature nervous systems. To evaluate whether bumetanide consistently attenuates epileptiform activity, we investigated the effect of 10 microM bumetanide in five different in-vitro epilepsy models using field potential recordings in the CA3 region of intact mouse hippocampal preparations at postnatal day 4-7. Bumetanide reduced amplitude and frequency of ictal-like events (ILE) induced by 8.5 mM K(+), but it increased the frequency of ILE induced by 1 microM kainate. Inhibition of ligand-gated Cl(-) channels by 10 microM gabazine and 30 microM strychnine induced interictal activity (IA) that was only marginally affected by bumetanide. Removal of extracellular Mg(2+) induced both ILE and IA. Bumetanide had no effect on these ILE but enhanced the IA. Low-Mg(2+) solution containing 20 microM 4-AP induced late-recurrent discharges, which were slightly attenuated by bumetanide. In summary, our results demonstrate that bumetanide exerts diverse effects in different in-vitro epilepsy models.
منابع مشابه
Dose-dependent effects of morphine on hippocampal seizure
Opiates have complex effects on seizure thresholds as these substances have both anti and proconvulsive actions in the mammalian brain. A reduction of inhibitory synaptic activity or enhancement of excitatory synaptic activity would be expected to trigger a seizure. This study is designed to determine how morphine and naloxone affect seizures induced by a low Mg2+ perfusate in the whole, intact...
متن کاملDose-dependent effects of morphine on hippocampal seizure
Opiates have complex effects on seizure thresholds as these substances have both anti and proconvulsive actions in the mammalian brain. A reduction of inhibitory synaptic activity or enhancement of excitatory synaptic activity would be expected to trigger a seizure. This study is designed to determine how morphine and naloxone affect seizures induced by a low Mg2+ perfusate in the whole, intact...
متن کامل2-Arachidonoylglycerol enrichment Reduced Epileptiform Activity of the Rat Hippocampus induced with Pentylenetetrazol
Background and Objective: 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are two major endocannabinoids. Using inhibitors of the enzymatic pathways involved in the elimination of 2-AG and AEA as well as synthetic 2-AG, we examined the effectiveness of these endocannabinoids on epileptiform activity induced in Wistar rats by pentylenetetrazol (PTZ). Material and Methods: Adult male Wistar r...
متن کاملProconvulsive effect of hydrochlorothiazide in an in vitro rat seizure model
Objective(s):Protective effects of diuretics, particularly of hydrochlorothiazide (HCT), for the development of seizure attacksepilepsy have been described in vivo. However, itsthe mechanism of action of HCT is unknownneeds to be elucidated. Materials and Methods: Extracellular field potentials were recorded from the CA1- and CA3-subfields of the hippocampus of rats. Epileptiform discharges wer...
متن کاملComparison of the Antifungal Activity of Honey and Fluconazole against Candida albicans in vitro and in an Enteric Candidiasis Mouse Model
Background & Objective: Candidiasis has gained importance due to its increasing prevalence in immunocompromised patients. Antifungal drugs such as fluconazole and amphotericin B are used for the treatment of candidiasis. One of the biggest problems faced in clinical practice is resistance for most of these drugs. The antifungal drugs derived from natural products have helped to overcome this pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropharmacology
دوره 53 4 شماره
صفحات -
تاریخ انتشار 2007